As part of the NEDO project related to the technological development of superconductivity, Furukawa Electric's research team and others have developed high-temperature superconducting cables(Note 1) that enable power transmission at 275kV and 1.5 million kVA, which is the highest level of superconducting power transmission in the world. They have also developed an aerial terminal connector and an intermediate connector(Note 2) for connecting with electrical equipment, and conducted demonstration tests at Shenyang Furukawa Cable Co., Ltd.(Note 3) in Shenyang, China. In the demonstration test, a long-term current load was conducted in an acceleration test equivalent to 30 years,(Note 4) which successfully confirmed the soundness of the cable and connectors.
Technological development of superconducting power transmission cables has mainly focused on 66kV so far. However, demand has increased, mainly overseas, for cables capable of power transmission at even higher voltages. The establishment of these technologies is expected to lead to the adoption of these cables and connectors as a new infrastructure, not only in Japan, but also in other countries.
In order to realize a stable and efficient power supply system, which forms the basis of economies and societies, it is necessary to establish technologies to control power systems appropriately and stabilize the power supply, as well as highly efficient power transmission technologies to transport generated power without loss. In the Technological Development Project for Yttrium Superconducting Electrical Systems (project leader: Yu Shiohara, Director of the International Superconductivity Technology Center), NEDO has been working on developing superconducting cables, superconducting transformers, and other electrical equipment that uses high-temperature superconducting wires from rare earth oxides—of which a typical example is yttrium (generally referred to as yttrium superconducting wires)—which are expected to result in compact large-capacity power supply by utilizing the global cutting-edge superconductivity technologies that have been derived from the past technological development.
Current load tests are conducted as part of the project. For the 275kV high-temperature superconducting cable system, Furukawa Electric created high-temperature superconducting cables based on the following design specifications, utilizing the yttrium superconducting wires(Note 5) developed for the project: a diameter of 150mm, a transmission loss of 0.8W/m, and a voltage of 275kV. A system measuring 30m in total length was built in Shenyang, China.
After confirming the cable's initial performance in mid-October 2012, the cable was loaded with a 3kA current at a voltage of 200kV, completing the monthlong test at the end of December of that year. The cable was then loaded with a voltage of 310kV to confirm that no partial discharge could be seen from the deterioration of the cables. The results confirmed the soundness of the cable, aerial terminal connector, and intermediate connector.
Based on the results of this technological development, NEDO intends to continue striving to put these superconducting cable systems to practical use in the hopes of helping to resolve global environmental issues.
Furukawa Electric plans to obtain a number of detailed design data necessary for this practical application by conducting further tests under different conditions and long-term current load tests, as part of its efforts to put superconducting cables to practical use.
(Note 1) High-temperature superconducting cable:
Superconductivity
refers to a phenomenon in which electrical resistance becomes zero when
the temperature falls below a certain point. Superconductivity is
categorized into low-temperature superconductivity (metallic
superconductivity), which uses liquefied helium (-269ºC) for cooling,
and high-temperature superconductivity (oxide superconductivity), which
uses liquefied nitrogen (-196ºC) for cooling.
A high-temperature superconducting cable is a power cable that uses
high-temperature superconducting wire. Since it has a higher temperature
than low-temperature superconductivity, fewer facilities are needed for
cooling. This allows a compact form to be realized and cooling costs to
be reduced.
Since the cable size is compact, the size and number of conduits for
underground power transmission lines may be reduced. If put to practical
use, the system is expected to significantly reduce the cost of
building power distribution facilities, as well as enhance power
transmission efficiency.Back to Main Content
(Note 2) Terminal connector, intermediate connector:
The terminal and intermediate connectors are auxiliary parts necessary
for connecting superconducting cables. The terminal connectors are
attached on both ends of a cable to connect the superconducting cable to
electrical facilities at ambient temperature. The intermediate
connectors connect the superconducting cables each other, and are
necessary to lay long-distance cables. Since the superconducting cables
are cooled by liquefied nitrogen and the conducting body is under high
voltage, the connectors need to compactly realize heat insulation
between the liquefied nitrogen temperature and ambient temperature and
electrical insulation between the ground and high-voltage parts.Back to Main Content
(Note 3) Shenyang Furukawa Cable Co., Ltd.:
The company was established in 1995 as a joint venture of Furukawa
Electric, Shenyang Cable Co., Ltd., and Itochu Corporation, and became a
wholly owned subsidiary of Furukawa Electric in 2003 through a 100%
investment. The company has a factory in Shenyang, China, and its scope
of business includes the manufacture and sale of 66-500kV ultra-high
voltage power cables and joints and other mechanical parts, along with
cabling work. Its product design, manufacture, and quality management
technologies were transferred from Furukawa Electric.Back to Main Content
(Note 4) 3Acceleration conditions equivalent to 30 years:
In order to verify a service life of 30 years in a long-term current
load test during a month, a test is conducted by applying an initial
withstand voltage of 200kV to ordinary operation voltage (160kV to
ground), applying 3kA load cycle, equivalent to the load fluctuation at
an actual use. This method applies the long-term current load test
stipulated in the Japanese Electrotechnical Committee (JEC-3408)
Standards.Back to Main Content
Manitowoc has announced a new four axle Grove All Terrain crane, the 90 tonne GMK4090, an upgrade to the current GMK4080-1/GMK4100B which has been in production since 2006. The new GMK4090 features
Spanish tower crane manufacturer Jaso has introduced three new models to its product line. The J700 is the new addition to the manufacturer’s Top Line (H) series. According to Jaso this crane
Terex Cranes has unveiled the Demag AC 45 City crane, a compact new three-axle unit in the 45-tonne lifting capacity class aimed at urban applications, with a total length of only 8.68 metres, a
Ritchie Bros has announced plans to introduce its IronPlanet online-only equipment auction site to the UAE. The Canada-headquartered heavy equipment auctioneer said that the move would enable the
Caterpillar has expanded its hydraulic excavator (hex) product line with the addition of three new models, which will be available in the Middle East in the second quarter of 2018. The company
Copyright © 2002-2024 cmsou.com Construction Machinery Online. All rights reserved. 北京摩迅筑路机械有限公司 About Us
Address: Room 901, Building C, Ruipu Mansion, Hongjunying South Road No.15, Chaoyang District, Beijing.100107 P.R.China
E-Mail: webmaster@cmsou.com TEL: 0086-10-52895329 FAX:0086-10-84673349 Site Map | Brand | Products
京ICP备09081701号-19